Fully discrete finite element data assimilation method for the heat equation
نویسندگان
چکیده
منابع مشابه
On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation
In this paper the numerical solution of the one dimensional heat conduction equation is investigated, by applying Dirichlet boundary condition at the left hand side and Neumann boundary condition was applied at the right hand side. To the discretization in space, we apply the linear finite element method and for the time discretization the wellknown theta-method. The aim of the work is to deriv...
متن کاملFull-discrete Finite Element Method for Stochastic Hyperbolic Equation
This paper is concerned with the finite element method for the stochastic wave equation and the stochastic elastic equation driven by space-time white noise. For simplicity, we rewrite the two types of stochastic hyperbolic equations into a unified form. We convert the stochastic hyperbolic equation into a regularized equation by discretizing the white noise and then consider the full-discrete ...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFully Discrete Finite Element Approximation for the Stabilized Gauge-Uzawa Method to Solve the Boussinesq Equations
The stabilized Gauge-Uzawa method (SGUM), which is a 2nd-order projection type algorithm used to solve Navier-Stokes equations, has been newly constructed in the work of Pyo, 2013. In this paper, we apply the SGUM to the evolution Boussinesq equations, which model the thermal driven motion of incompressible fluids. We prove that SGUM is unconditionally stable, and we perform error estimations o...
متن کاملA nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation
In this paper, we study finite element approximations of the viscosity solution of the fully nonlinear Monge-Ampère equation, det(Du) = f (> 0) using the well-known nonconforming Morley element. Our approach is based on the vanishing moment method, which was recently proposed as a constructive way to approximate fully nonlinear second order equations by the author and Feng in [15]. The vanishin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 2018
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/2018030